

JABLONSKI DIAGRAM

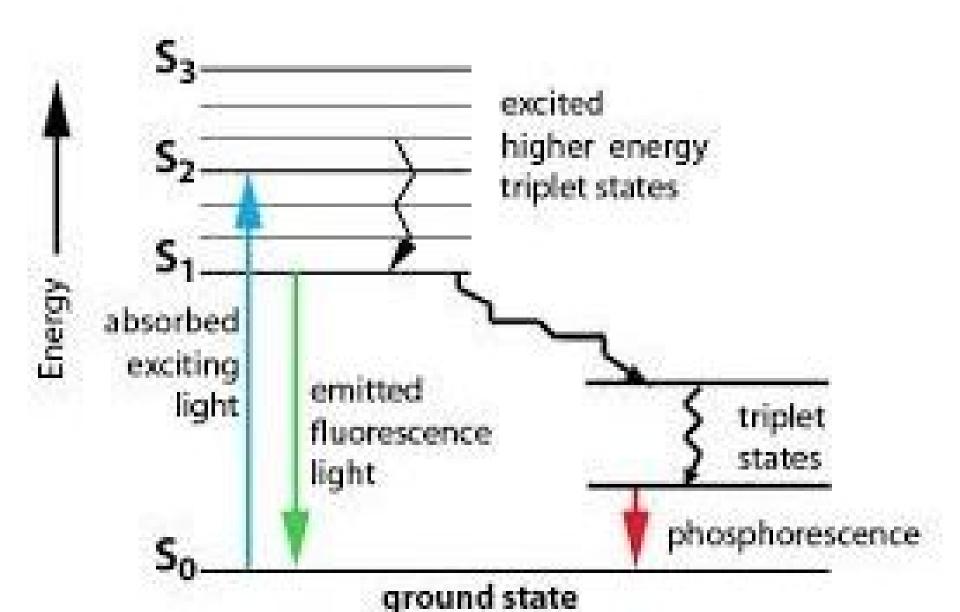
JABLONSKI DIAGRAM

A molecule excited to higher energy state unless it gets involved in a photo chemical reaction and loses its

identity.

There are more than one pathways available to the excited molecule for dissipation of excitational energy

A+hr > A


Where A^{*} is either an electronically excited molecule with excess vibrational energy in S_1 state or a molecule excited to higher singlet state S_2 , S_3 etc.. The initial absorption may promote a molecule to higher energy states S₂, S₃ etc.. to higher vibrational levels of the S₁ state in time period 10⁻¹⁵ s (k=10¹⁵ s⁻¹) obeying Frank-Condon Principle.

The electronic energy of S₂, S₃ states or excess vibrational energy of S₁ state is quickly lost to the surroundings by a mechanism known as Internal Conversion (IC).

The rate constant of internal conversion is ~10¹³-10¹² s⁻¹
Inter system crossing (ISC) involves non radiative transition from singlet to triplet state

Rate constant for ISC should also be 10¹² s⁻¹ but due to spin restriction factor, it varies from 10¹¹ to10⁷ s⁻¹.

DIAGRAM:

The Quantum Yield of a photo chemical process is defined as

N0.of molecules that react

No.of quanta of radiation absorbed

No.of moles that react No.of einstein of radiation absorbed

 $\frac{Rate of process}{Intensity of light absorbed} = \frac{\gamma}{I_{abs}}$

FLUROSCENCE EMISSION

- Fluroscence emission is normally observed from the first excited singlet state of the molecule.
- The rate constant for Fluroscence emission k_f is defined as,

 $K_{f} = 1/T_{N} = 1/T_{f}^{0}$

• In the presence of other competitive deactivating processes, the average lifetime is much reduced and actual lifetime T_f is

 $T_f = 1/k_f + \epsilon k_t$

• Where €k_t is the rate constant for the ith competitive process assumed to be uni-molecular.

The Quantum yield of Fluroscence Φ_f is defined as

 φ_f $\frac{No.of \ quanta \ emitted \ /s/cm^2}{No.of \ quanta \ absorbed \ /s \ /cm^2} = \frac{n_f(h\gamma_f)}{n_a(h\gamma_a)}$ $\frac{Intensity of emission}{Intensity of absorption} = \frac{F einstein s^{-1} cm^{-2}}{I_a einstein s^{-1} cm^{-2}}$ $=\frac{rate \ of \ emission}{rate \ of \ absorption} = \frac{k_f[s_1]}{I_a}$

 S_1 is the concentration of the lowest excited singlet molecules. It is independent of the exciting wavelength except when chemical changes occur.

PHOSPHORESCENCE EMISSION

Inter system crossing (ISC) involves non-radiative transition from singlet to triplet state, generating ³A which can decay by radiative Phosphorescence emission

phosphorescence emission from the triplet state to the singlet state is a slower process. Hence it appears as delayed emission when the exciting light is shut off.

The quantum yield of Φ_p is defined as

 ψ_r

 $T_1 \rightarrow s_0 transition$

Number per second of quanta absorbed $ins_1 \leftarrow s_0$ transition

 $\frac{rate \ of \ phophorescence}{rate \ of \ absorption} = \frac{k_p[T_1]}{I_a}$

intensity of phophorescence emission
intensity of absorption
P einstein s⁻¹

I_{a einstein s}-1

 T_1 is the concentration of the triplet state.

Because of the forbidden nature of $T_1 S_0$ transition, T_1 is long lived and subjected to rapid collisional deactivation and thermal relaxation. As a result phosphorescence is not observed at room temperature except for a few cases. It is observed at low temperatures only in rigid glassy solutions.

The intrinsic lifetime of triplet T_1 state T_p^0 is the reciprocal of the rate constant for phosphorescence emission and the actual lifetime T_p is the reciprocal of the sum of all the steps which deactivate the triplet

 $\tau_p = \frac{1}{k_n + k_{ISC}^T}$

 $\tau_p^o = \frac{1}{k_{-}}$

Where k^T ISC is the rate constant for inter system crossing from triplet to ground state. •, and •, are quantum efficiencies of phosphorescence emission and triplet formation respectively. Φ_{T} is identical with ISC efficiency Φ_{ISC} assuming that all the molecules which do not fluoresce are transferred to the triplet state. The phosphorescence lifetimes may vary from 10 s to more than a second

www.shutterstock.com · 111088511

